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My role in the project

• Help make the Phrase Detectives resources more accessible
• Help inform the NLP community about best practices for 

annotation analysis
• Help the team with machine learning expertise
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Example of an annotation task

• Recognizing textual entailment
• Coders are presented with two sentences and asked to judge whether the second sentence, called a 

hypothesis, can be inferred from the first

• A positive case of textual entailment:
• Premise: “Crude Oil Prices Slump.”
• Hypothesis: “Oil prices drop.”

• A case of false entailment:
• Premise: “The government announced last week that it plans to raise oil prices.”

• Hypothesis: “Oil prices drop.”



A summary of the annotation patterns from the Recognizing Textual Entailment (RTE) 
dataset (Snow et al., 2008)
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Probabilistic models of annotation

• Simply put, a model of annotation is a probabilistic framework for distilling the 
disagreement between coders from noisy interpretations

• We can specify our assumptions about the annotation process, e.g., the 
interactions between the items and the coders

• Our assumptions are then considered when inferring the corpus labels
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Dawid and Skene (1979)

• Each item has a true class whose prior probability is given by the prevalence of 
the true classes in the corpus:

𝑐!~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝜋)

• The model assumes that each annotation is produced according to its coder’s 
annotation behavior associated with the true class:

𝑦!,#~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝜁$$ !,# ,%!)
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Coder estimates for the model of Dawid and Skene (1979) fitted on the RTE dataset
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Disagreements in annotation: item difficulty

• Example of an ‘easy’ judgement:
• Premise: “The three-day G8 summit will take place in Scotland.”

• Hypothesis: “The G8 summit will last three days.”

• Example of a ‘difficult’ judgement:
• Premise: “EU membership is a strategic necessity for Turkey, as Ankara will inevitably suffer 

greater foreign policy problems in the future unless it makes it into the Union.”

• Hypothesis: “Turkey to join the EU.”
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Carpenter, 2008

• The probability of an annotator being correct on an item is based on a subtractive relationship 
between their ability and the difficulty of the item:

𝑝 𝑦!,# = 𝑐! = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝛼$$[!,#] − 𝜃!

• If the item is easy (𝜃! < 0) the accuracy of the coders is increased

• In case of a hard item (𝜃! > 0) , the difficulty parameter reduces the accuracy of the coders
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The average difficulty estimated by the models of Carpenter (2008) for items with a certain amount of disagreement

logistic(-1.55) = 0.18 

logistic(0.78) = 0.69
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The anaphoric annotation task

• In standard anaphoric annotation projects the mentions are predefined for better 
agreement

• The annotation scheme allows coders to mark a mention as discourse new or as 
discourse old

• In the latter case the annotators also must specify the entity in question

• Richer annotation schemes allow annotators to also mark, e.g., expletives and 
predicative noun phrases
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An example of anaphoric annotation

• [John], [a colleague from work], said [it] will rain later today. [He] was right.

• The annotators should mark:
• “John” as discourse new

• “a colleague from work” as a predicative noun phrase
• “it” as an expletive

• and the pronoun “he" as a discourse old mention further selecting “John” as its most recent 
antecedent
• Mentions “John” and “he” form a coreference chain
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What is the challenge?

• This looks like a classification task
• Unlike in standard classification tasks, the set of classes the coders 

can choose from changes depending on the mentions they annotate
• For this reason, standard models of annotation are not immediately 

applicable to aggregate anaphoric judgements

14
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• The annotations are transformed into mention-pairs:

• MPA models these mention-pair judgements as the result of the 
sensitivity and the specificity of the annotators

Mention-pair Type Coder 1 Coder 2 Coder 3

(“he”, “John”) discourse old 1 1 0

(“he”, discourse new) discourse new 0 0 1
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MPA’s generative process

• For every mention-pair (i,m) an indicator encodes whether it is correct or not:
𝑐",$ ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋%!,#)

• If the mention pair is believed to be correct (𝑐!,( = 1), then the associated binary judgements are 
assumed to be the result of the annotators’ sensitivity for that type of mention pairs:

𝑦",$,& ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝛼''[",$,&],%!,#)

• When the mention pair is incorrect (𝑐!,( = 0) the binary judgements are modelled according to 
the specificity of the coders:

𝑦",$,& ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝛽''[",$,&],%!,#)
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Observations

• The annotators have a sensitivity and a specificity associated with each type of 
mention-pairs

• After the parameters have been estimated each mention is assigned the most 
likely interpretation based on the posterior of the mention-pair indicators

• The coreference chains (entities) can then be built by simply following the link 
path from the aggregated mention pairs

• The model can also be used in an analysis of anaphoric ambiguity
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MPA at work

• We used MPA to adjudicate the anaphoric interpretations collected by the Phrase 
Detectives game with a purpose

• The latest version of the released corpus (Poesio et al., 2019) contains at least 8 
anaphoric judgements for over 100 thousand mentions from about 540 documents 
covering 2 main genres, Wikipedia articles and fiction from the Gutenberg collection

• 45 of those documents, containing over 6 thousand mentions, were annotated by linguists 
to provide a reliable gold standard for evaluation
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• Estimated mention-pairs evaluated against a gold standard built by linguists
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• The quality of various coreference chains evaluated using standard coreference 
metrics against expert-annotated chains



In conclusion…

• A workshop on “Aggregating and Analysing Crowdsourced Research 
Annotations for NLP”
• Silviu Paun, Dirk Hovy

• A tutorial on “Aggregating and Learning from Multiple Annotators”
• Silviu Paun, Edwin Simpson

• A book on “Statistical Methods for Annotation Analysis”
• Silviu Paun, Ron Artstein, Massimo Poesio



Thank you!


