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Disagreement in human annotation is ubiquitous
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  Side benefit of annotation - fortuitous data: 

      Disagreement as a source of information?



Data: Is disagreement random noise?

Modelling: How can we leverage disagreement?

Evaluation: How to evaluate in light of disagreement?
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Selected examples
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Act I: Data



These data suggest that subclinical  
RIBOFLAVIN DEFICIENCY may occur in adolescents and 

that deficiency may be related to dietary intake of 
RIBOFLAVIN
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Medical Relations Extraction (MRE)

relation, count
ASSOCIATED_WITH 4

SYMPTOM 3
CAUSES 3

PREVENTS 1 
SIDE_EFFECT 1

MANIFESTATION 1 
PART_OF 1 

DIAGNOSE_BY_TEST_OR_DRUG 1 
OTHER 1

Data and example from Aroyo & Welty (2015) and Palomaki et al., (2018)



Premise p:  Amanda carried the package from home .
Hypothesis h:  Amanda moved . 

 
Does p->h?  

original-dataset-label: entailed
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Recognising Textual Entailment (RTE)

Data from Pavlick & Kwiatkowski (2019) 

~neutral entailmentcontradiction



there are linguistically hard 
cases, even for POS tagging
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e.g. Manning (2011). Part-of-Speech tagging 
from 97% to 100%. Is It Time for Some 

Linguistics?



Say Anything with boyfriend :)

VERB       NOUN         

Example from Twitter crowdsourced dataset (Gimpel et al., 2012; Hovy et al., 2015)

VERB        PRON       

 ADP       NOUN     SYMVERB         ADV       

 ADP       NOUN     SYM

 ADP       NOUN     SYM

Part-of-Speech (POS)
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Dependency Parsing

Example from Liu et al., 2018 Example from Norwegian data in Martinez-Alonso et al. 2015 9



Q:  Hey. Everything ok?
A: I’m just mad at my agent 
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Understanding Indirect Questions

Damgaard, Toborek, Eriksen & Plank (2021) To appear in CODI, EMNLP 2021 workshop 
Louis et al. (2020) EMNLP 

Yes                          
No       

Yes, subject to some condition
Neither Yes nor no    

Other   
N/A



Are disagreements randomly distributed?
... and can we estimate disagreements from small 

samples?

(Plank et al., 2014)
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TwitterWall Street Journal PTB-00
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(Plank et al., 2014)



TwitterWall Street Journal PTB-00
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(Plank et al., 2014)



TwitterWall Street Journal PTB-00
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(Plank et al., 2014)



Are disagreements randomly distributed?
... and can we estimate disagreements from small 

samples?

(Plank et al., 2014)

No.

Yes!
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Are disagreement distributions unimodal?
… do they contain inherent disagreement signal?

(Pavlick & Kwiatkovski, 2019)
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Is Unimodal (= Single Truth) Enough?
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(Pavlick & Kwiatkovski, 2019)



GMM with 1 component vs k components

(Pavlick & Kwiatkovski, 2019)

Examples with bi-modal human 
judgement distributions
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“For 20% of the sentence pairs, there is a non-trivial second 
component”

(Pavlick & Kwiatkovski, 2019)

RTE Analysis
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Are disagreement distributions unimodal?
… do they contain inherent disagreement signal?

(Pavlick & Kwiatkovski, 2019)

No.

Yes!
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Data: Is disagreement random noise?

Modelling: How can we leverage disagreement?

Evaluation: How to evaluate in light of disagreement?
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Accept there is no 
ground truth.

So what can we do?

Act II: Modelling



Learning with Disagreement
Aggregation methods  
(e.g. Dawid & Skene, 1979;  
Paun, Artstein, Poesio, forthcoming  
Morgan & Claypool book) 

Filter data 
(e.g. hard filtering by Reidsema & 
van den Akker, 2008; Beigman-Klebanov et al.) 
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Human 
Disagree- 

ment

Aggregate or 
Filter

Resolve

Leverage 
DisagreementEmbrace

1

2

Aggregate

Filter 

Weighting, Multi-task Soft Loss 
(e.g. Plank et al., 2014; Fornaciari et al., 2021) 

Soft-labels, CrowdTruth, DL  
from Crowd, Repeated Labeling 
(e.g. Peterson et al., 2019, Uma et al. 2020;  
Aroyo & Welty, 2014; Rodrigues & Peireia, 2017;  
Sheng et al., 2008)

3

4

Augment gold 

Learn directly  
from raw 

annotations
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Aggregation

A B A

B B B

D C C

A

B

C

1
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Filter

A B A

B B B

D C C

B

C

2



Augment gold with 
disagreement
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Weighting by Disagreement
 CM (confusion matrix)

Plank, Hovy, Søgaard (2014)cost-sensitive learning
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Soft-labels via Multi-Task Learning

Gold label

x

0
0,45

0,9

A B C D

Gold label + Soft label

x

(Fornaciari, Uma, Paul, Plank, Hovy, Poesio 2021 NAACL)

y=C

0
0,45
0,9

A B C D

y=C

0
0,45
0,9

A B C D

0
0,2
0,4

A B C D
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Soft-labels

0
0,2
0,4

A B C D

0
0,3
0,6

A B C D

Predicted softmax Q

Annotator distribution P

Measure divergence



• Comparison: 

• Single task learning 

• Multi-task learning (with gold or majority vote) 

• With soft loss 

• Two NLP tasks in this paper: POS and stemming

Experiments
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Results
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84

85

86

87

STL MTL + KL MTL + KL inv

Accuracy POS 5 fold
Accuracy POS test

73

75

76

78

STL MTL + KL MTL + KL inv

Accuracy  Stemming

DKL(Q | |P)DKL(P | |Q)



Learn directly from raw 
annotations
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E.g. Deep Learning from Crowd
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• Dataset: Friends-QIA dataset (Damgaard, Toborek, Eriksen & 
Plank, 2021) to appear in CODI @ EMNLP 2021; Fleiss 0.8833 
 
 
 
 
 

Experiments: Understanding 
Indirect Questions
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Most incorrect predictions on 
instances humans did not agree on

35Correct and incorrect predictions of CNN with BERT vs. annotator agreement. 



Deep Learning from Crowd
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More methods, overview and empirical evaluations: 
 

 JAIR survey by Uma et al., 2021: 

Learning from Disagreement: A Survey
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Alexandra Uma,  Tommaso Fornaciari, Dirk Hovy,  Silviu Paun, Barbara Plank, Massimo Poesio (2021 JAIR, 
forthcoming)



Data: Is disagreement random noise?

Modelling: How can we leverage disagreement?

Evaluation: How to evaluate in light of disagreement?
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We Need to Talk about 
Disagreement in 

Evaluation 

Work in collaboration with Alexandra Uma,  Dirk Hovy,  Massimo Poesio, Michael Fell, Silviu Paun, 
Tommaso Fornaciari,  Valerio Basile (BPPF workshop@ACL 2021)
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• A single correct answers ignores the subjectivity and complexity 
of many tasks 

➡ Focus on “easy”, low-risk evaluation 

• Many works on learning from disagreement compare against an 
evaluation set assumed to encode a single ground truth

Evaluation in Interpretation Tasks
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• Gold labels are often an idealisation, unreconcilable 
disagreement is abundant

Example from VQA 2.0
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‣ Stimulus characteristics (ambiguity, task difficulty) 

‣ Individual differences (incl. cultural and socio-
demographics): for example in hate speech or sentiment 

‣ Context and attention (Intra-coder disagreement; attention 
slips play a non-negligible role as well (Beigman Klebanov 
et al., 2008)
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Sources of disagreement



‣ Bowman & Dahl (2021): study and 
eliminate biases and artefacts in data 

‣ Beigman Klebanov & Beigman 
(2009): evaluate on “easy” instances

‣ Plank et al., (2014): Linguistically 
debatable or just plain wrong? 

‣ Jamison & Gurevych (2015), 
Fornaciari et al., (2021): Noise or 
additional information? 

‣ Aroyo & Welty (2015): Truth is a lie: 
Crowd Truth and the Seven Myths of 
human annotation 

‣ Palomaki et al. (2018): a range of 
“acceptable variation” 

‣ Uma et al. (2020), Basile (2020): Soft 
loss in NLP, evaluation
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Similar position: In contrast:



‣ Proposal: evaluate against hard and soft labels 

‣ Soft evaluation sheds more light if uncertainty in models is 
similar to human uncertainty in labeling (human collective) 

‣ Soft label evaluation e.g.: 

‣ Jensen-Shannon divergence (Uma et al., 2020; 2021; Nie et 
al., 2020); Uma et al. present further inf.-theoretic measures 

‣ Cross-entropy: Image classification (Peterson et al., 2019); 
in NLP (Pavlick & Kwiatkovski, 2019; Uma et al., 2020) 

‣ Comparison of hard & soft evaluation in our upcoming survey

Evaluation in Light of Disagreement
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✓not all disagreement is noise 

✓embrace it during learning 

➡ Consider releasing raw annotations 

✦ More work needed to understand forms of 

disagreement and embrace it in evaluation - 

see Uma et al. 2021 & Basile et al. 2021
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Take-home message

0,0
0,2
0,4

A B C D

45



Questions?  Thanks!

What to do about  
Human Disagreement in NLP? 

@barbara_plank 
bapl@itu.dk

Thanks to the support by:

nlpnorth.github.io
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mailto:bapl@itu.dk
http://nlpnorth.github.io

