## What to do about Human Disagreement in Natural Language Processing?

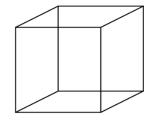
@barbara\_plank DALI end-of-project workshop September 24, 2021

#### Disagreement in human annotation is ubiquitous

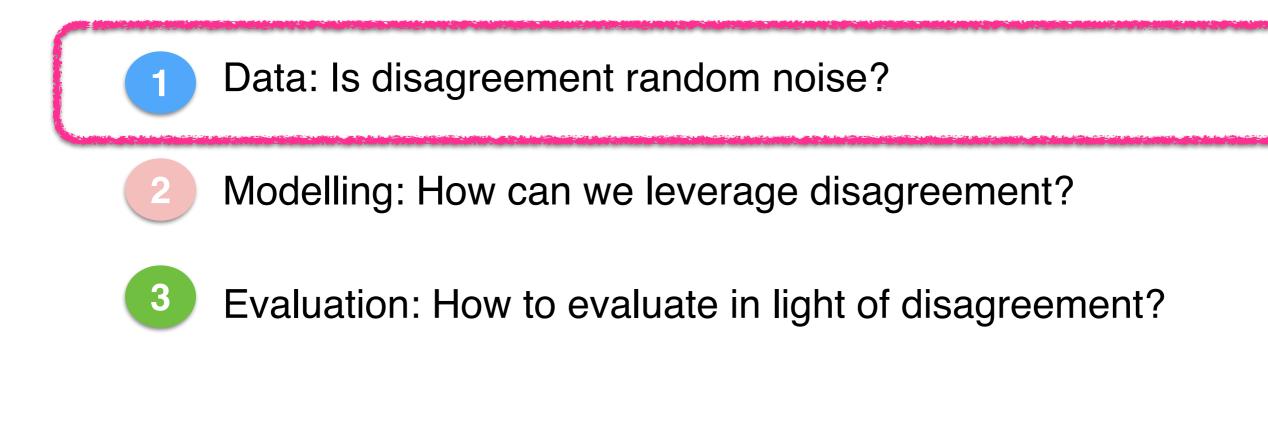


**Side benefit of annotation - fortuitous data:** 

Disagreement as a source of information?



### Roadmap



# Selected examples

#### Act I: Data

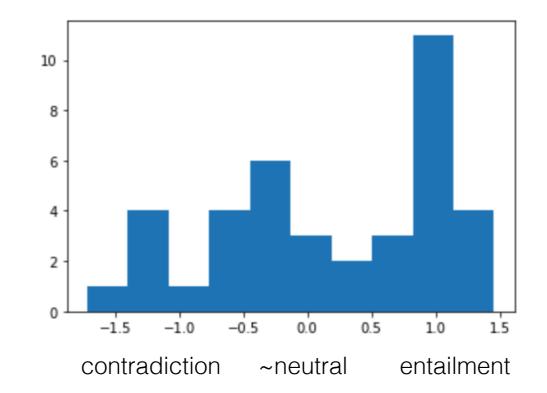
#### **Medical Relations Extraction (MRE)**

relation, count

ASSOCIATED\_WITH 4 SYMPTOM 3 CAUSES 3 PREVENTS 1 SIDE\_EFFECT 1 MANIFESTATION 1 PART\_OF 1 DIAGNOSE\_BY\_TEST\_OR\_DRUG 1 OTHER 1

These data suggest that subclinical RIBOFLAVIN DEFICIENCY may occur in adolescents and that deficiency may be related to dietary intake of RIBOFLAVIN

#### **Recognising Textual Entailment (RTE)**



#### Premise p: Amanda carried the package from home . Hypothesis h: Amanda moved .

#### Does p->h? original-dataset-label: entailed

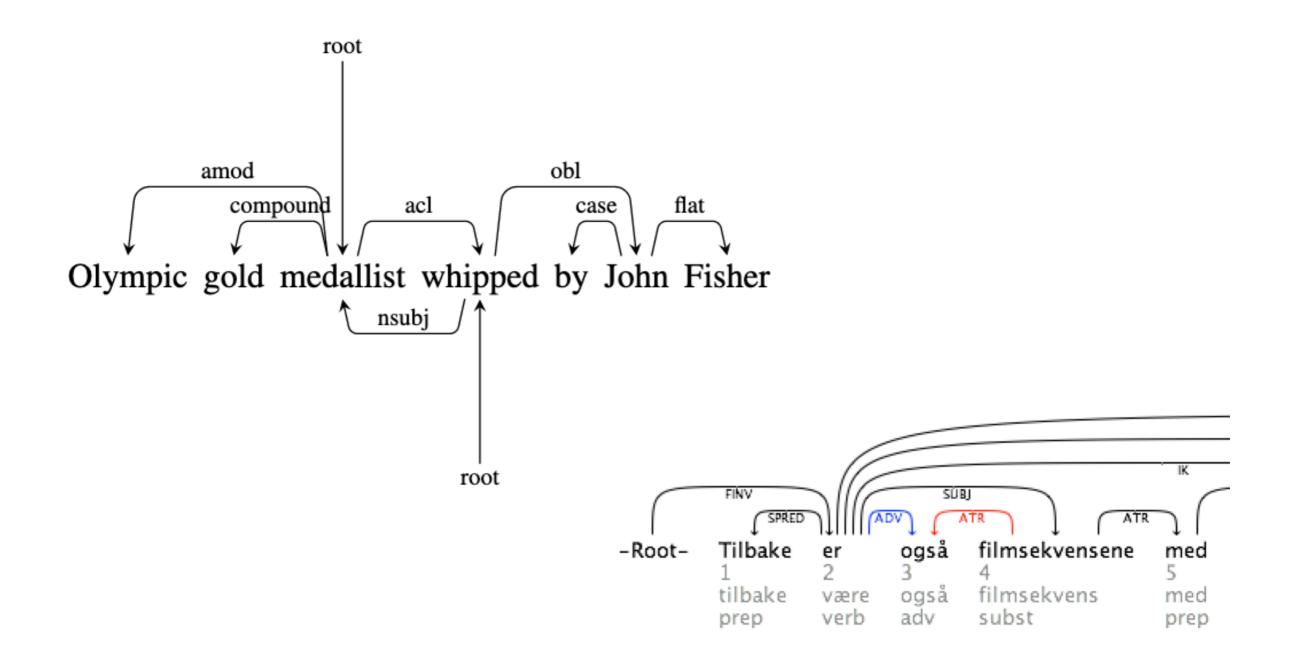
# there are linguistically hard cases, even for POS tagging

e.g. Manning (2011). Part-of-Speech tagging from 97% to 100%. Is It Time for Some Linguistics?

#### Part-of-Speech (POS)

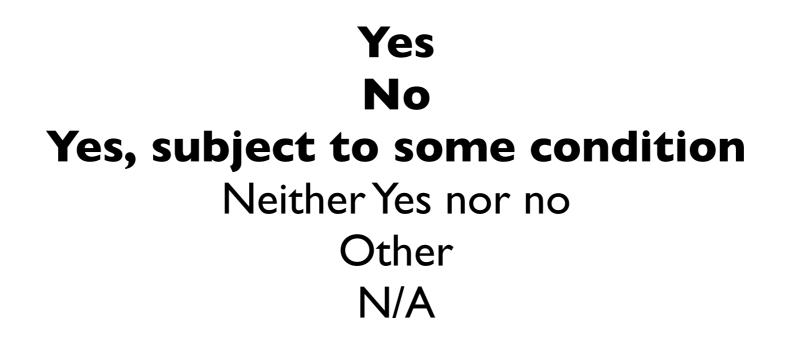
ADP NOUN **SYM VERB** NOUN NOUN ADP SYM VERB PRON **VERB** ADP NOUN SYM **ADV** Say Anything with boyfriend :)

#### **Dependency Parsing**



#### **Understanding Indirect Questions**

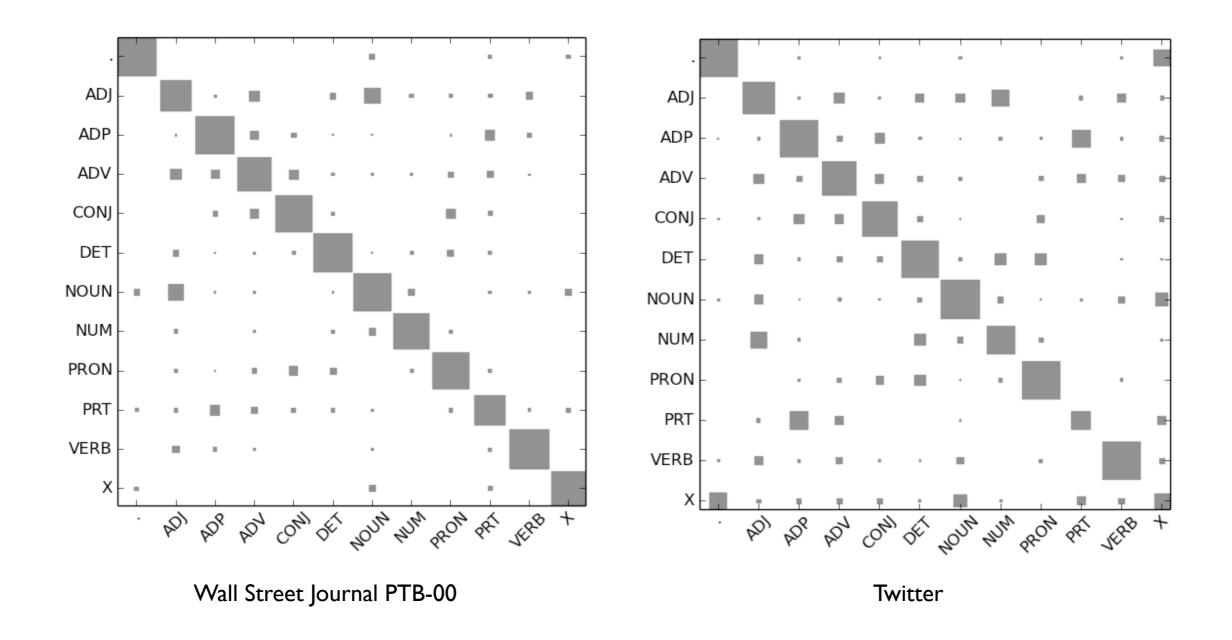
Q: Hey. Everything ok? A: I'm just mad at my agent

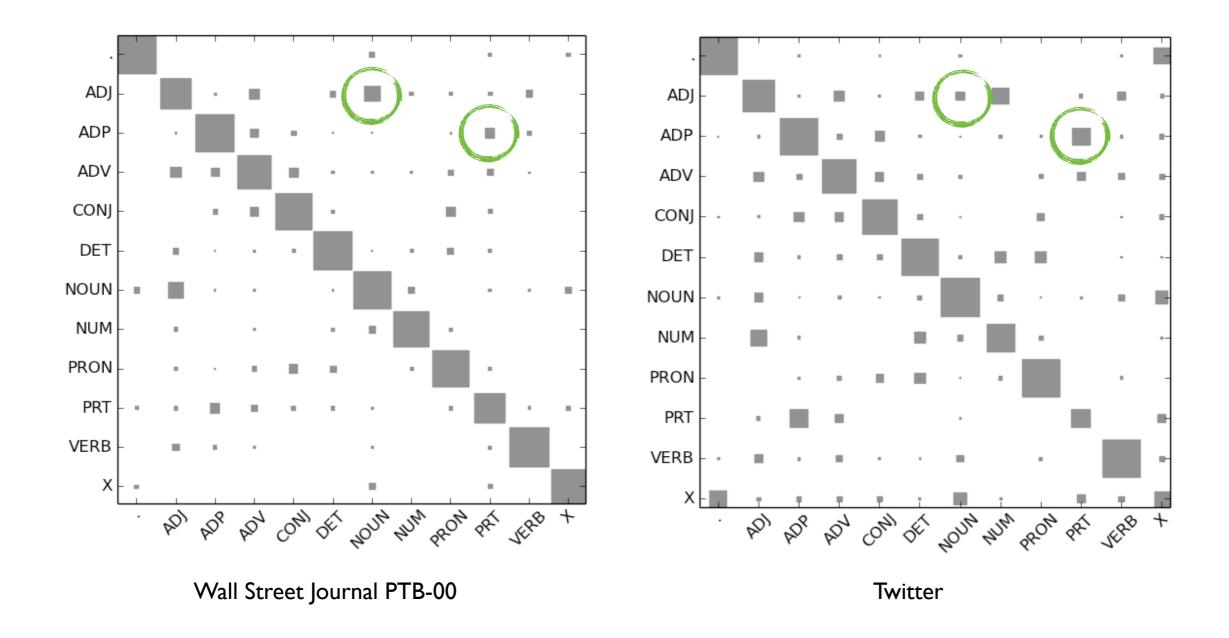


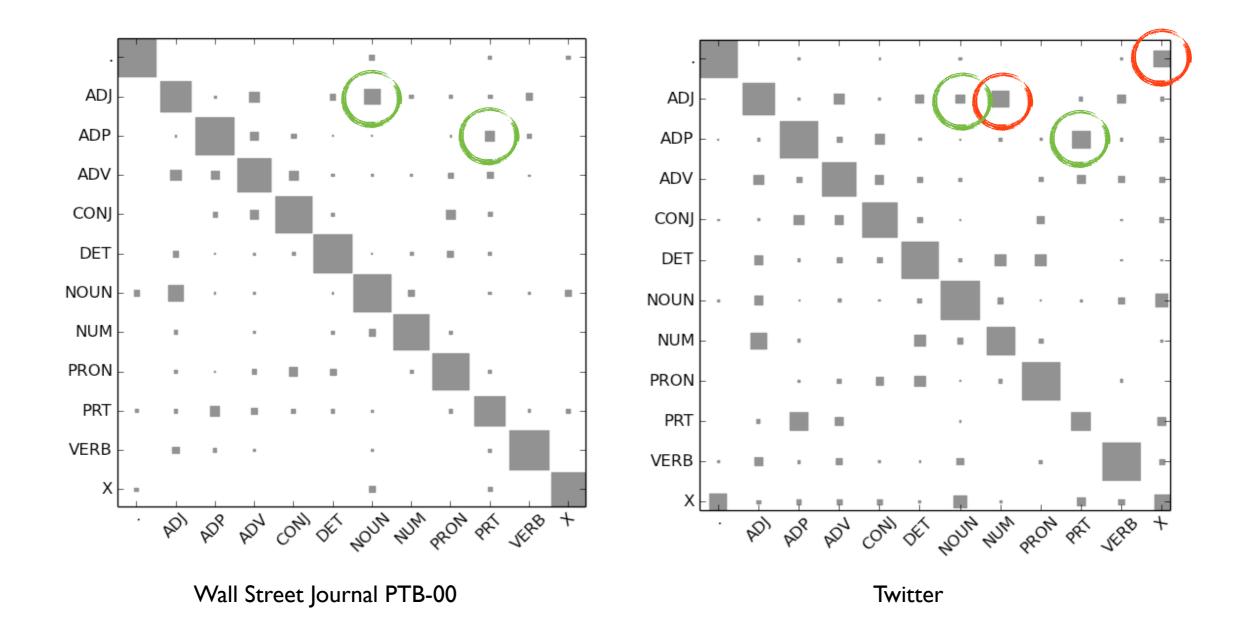
Damgaard, Toborek, Eriksen & Plank (2021) To appear in CODI, EMNLP 2021 workshop Louis et al. (2020) EMNLP

#### Are disagreements randomly distributed?

... and can we estimate disagreements from small samples?







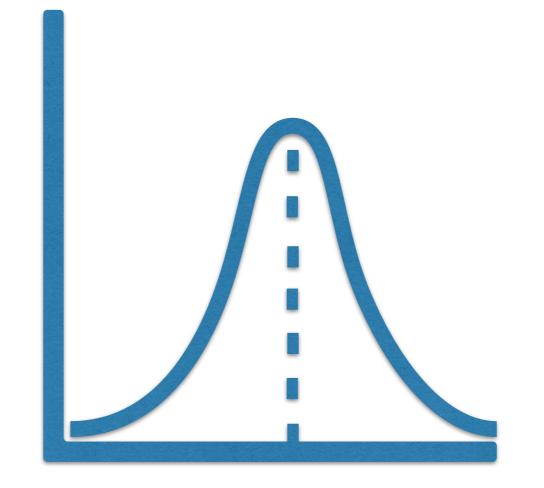
# Are disagreements randomly distributed? No.

... and can we estimate disagreements from small samples?

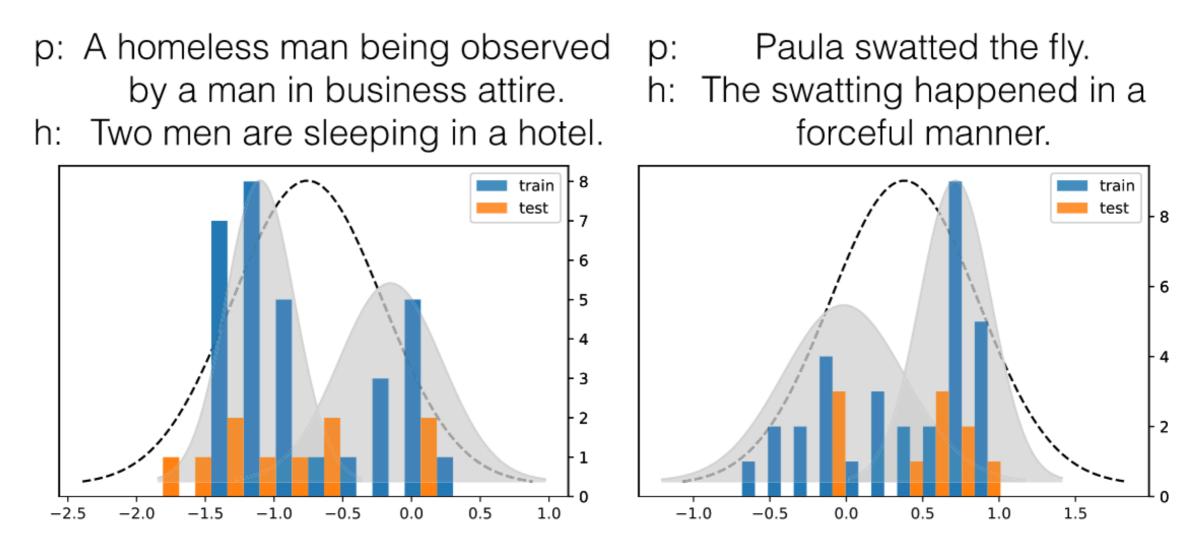
#### Are disagreement distributions unimodal?

... do they contain inherent disagreement signal?

#### Is Unimodal (= Single Truth) Enough?



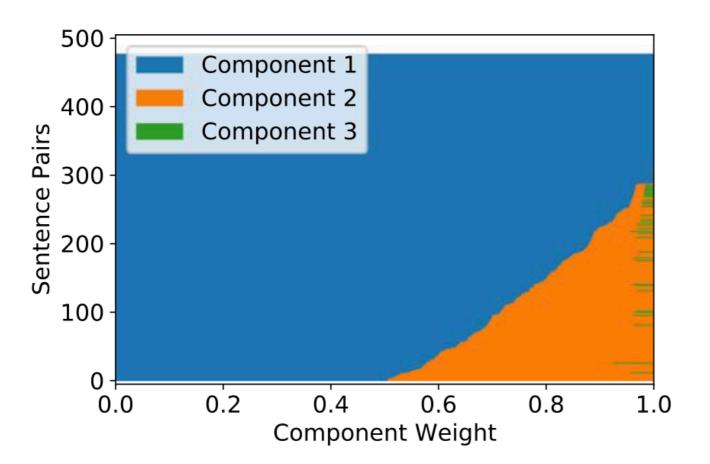
# Examples with bi-modal human judgement distributions



GMM with 1 component vs k components

#### **RTE Analysis**

"For 20% of the sentence pairs, there is a non-trivial second component"



#### Are disagreement distributions unimodal? No.

... do they contain inherent disagreement signal?  $\gamma_{es}$ 

### Roadmap



3

Modelling: How can we leverage disagreement?

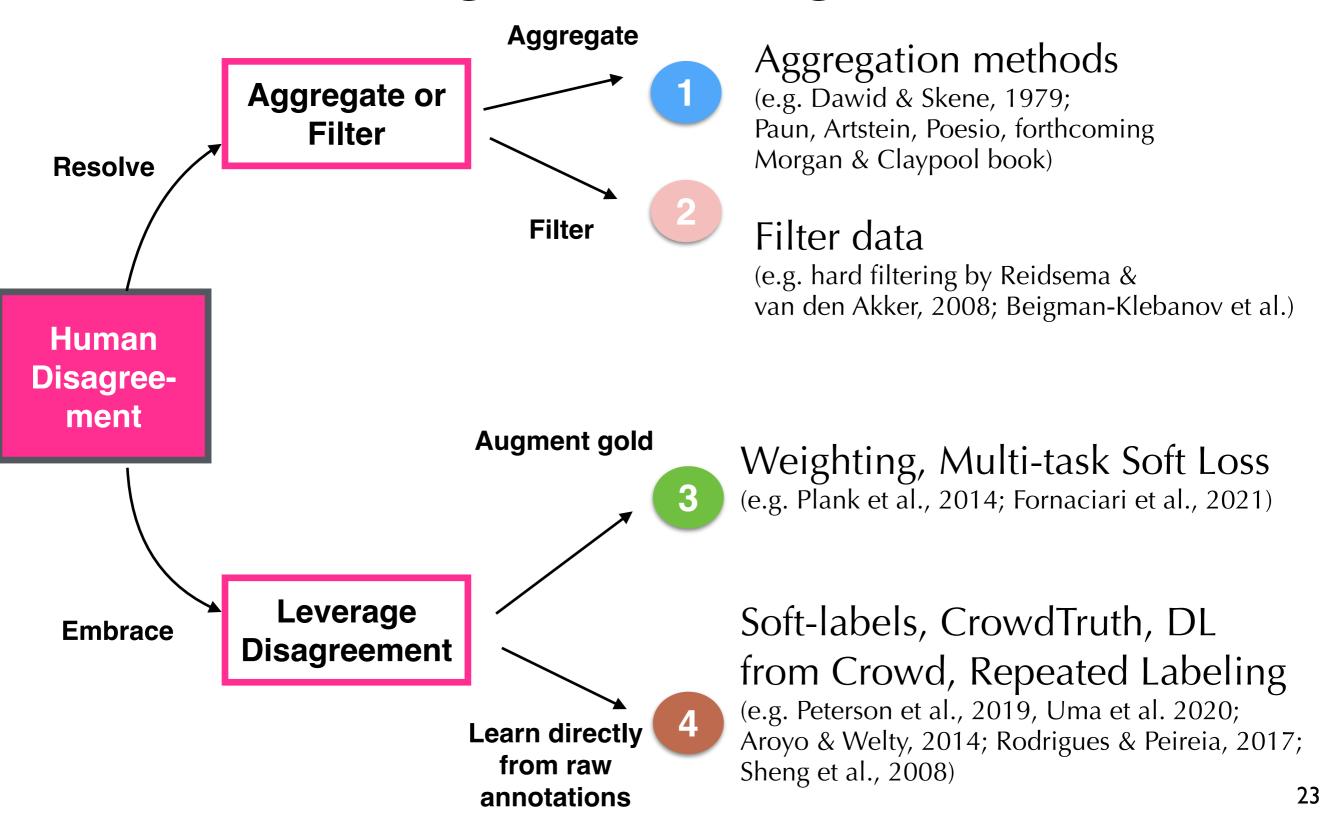
Evaluation: How to evaluate in light of disagreement?

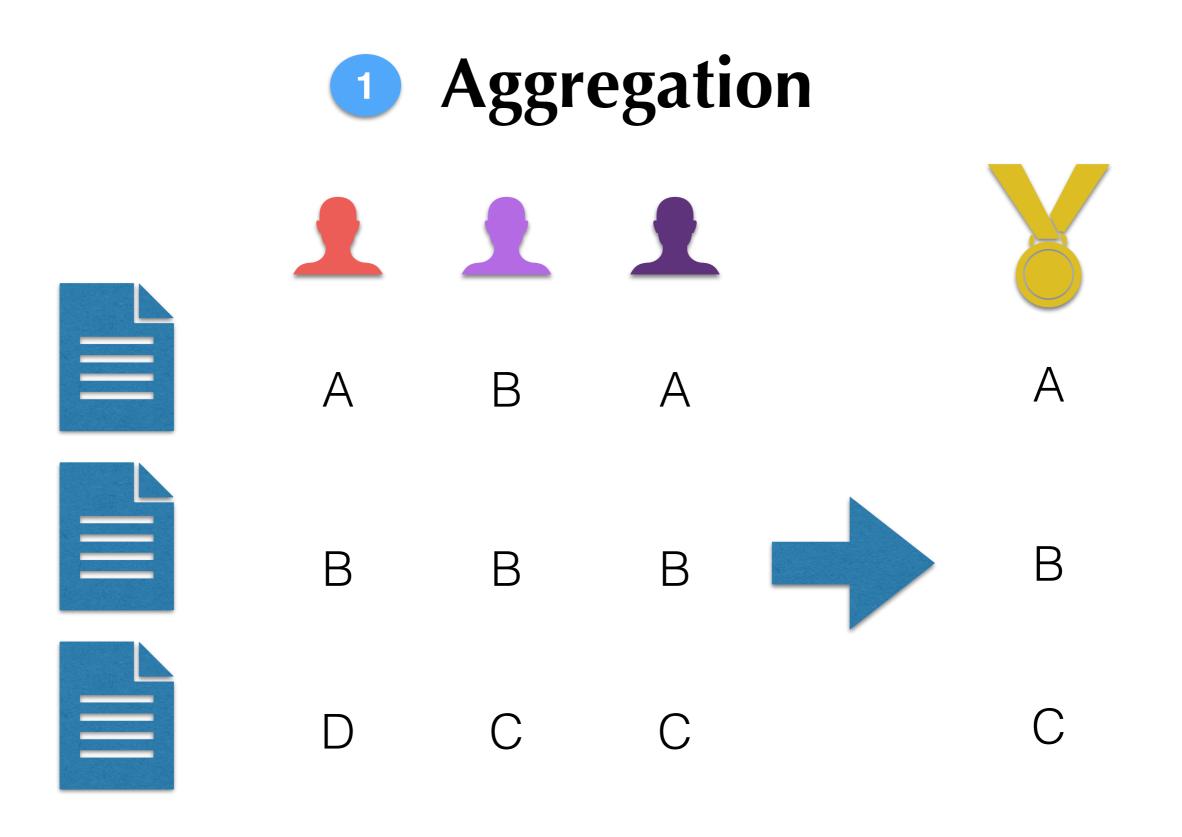


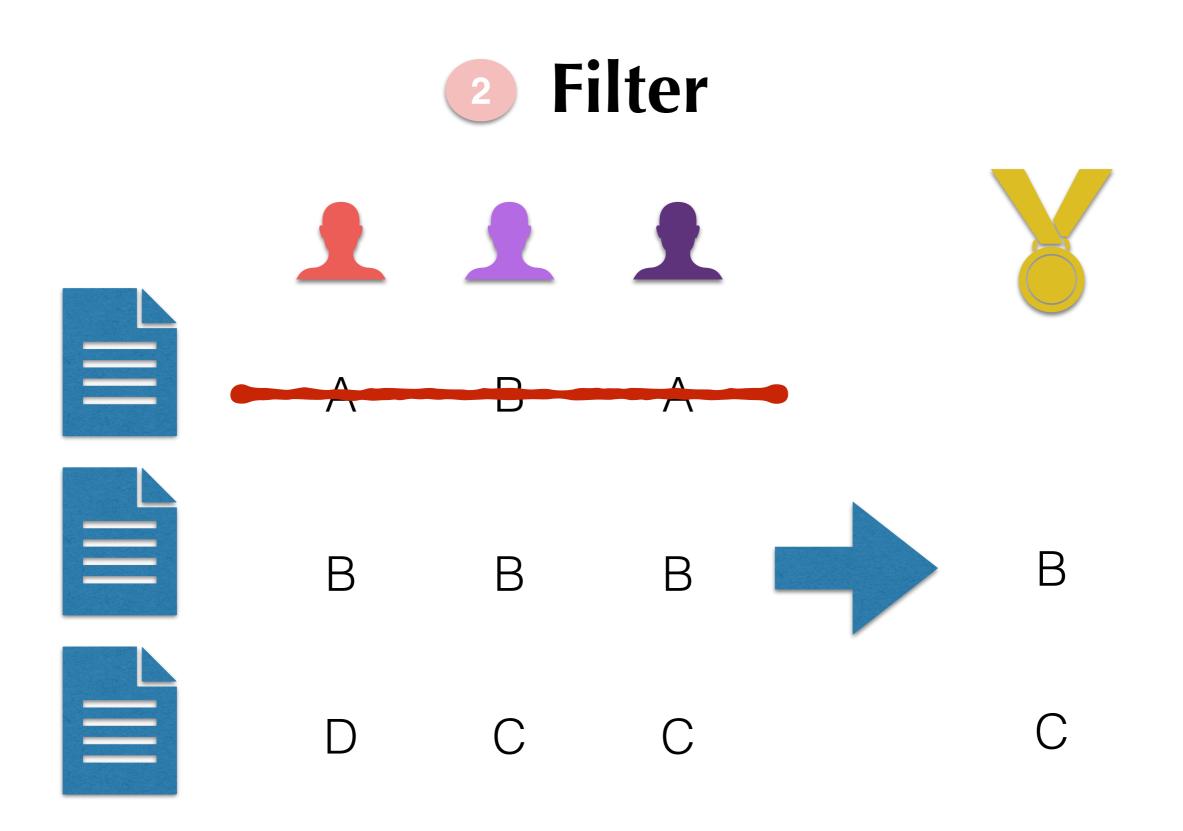
## So what can we do?

#### Act II: Modelling

### Learning with Disagreement

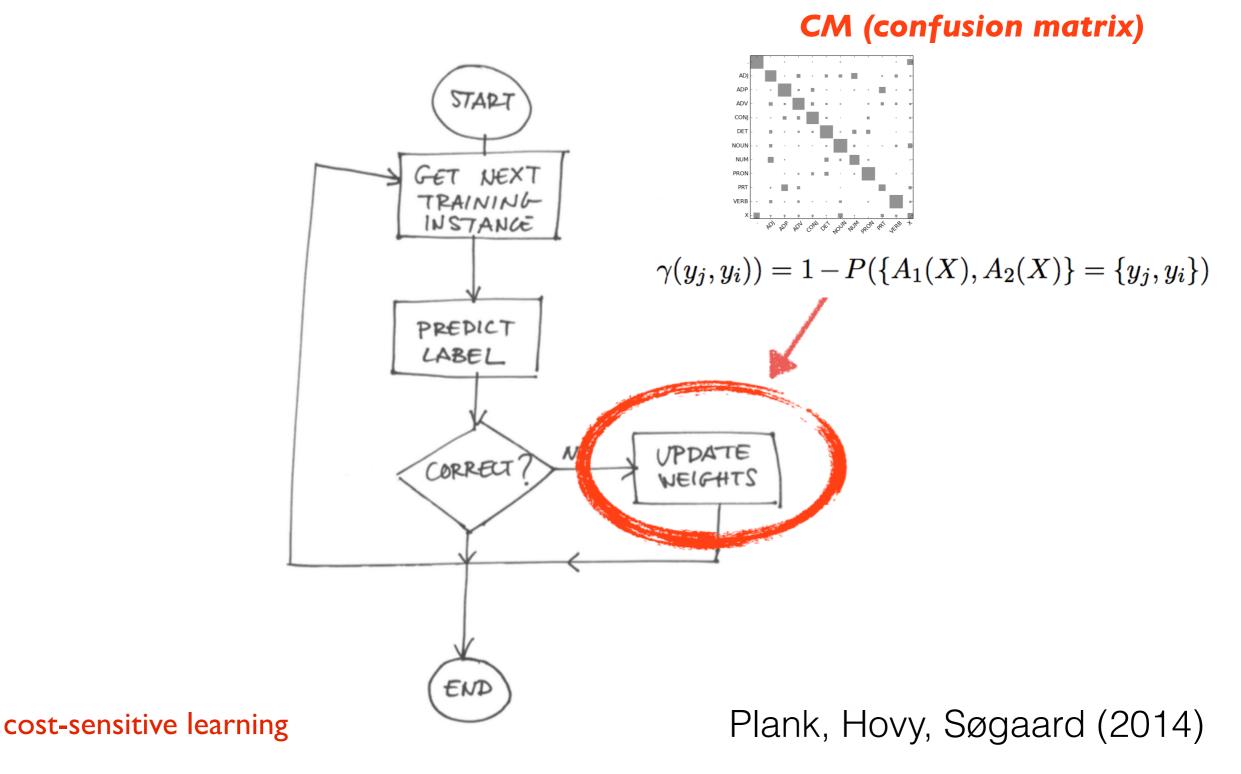






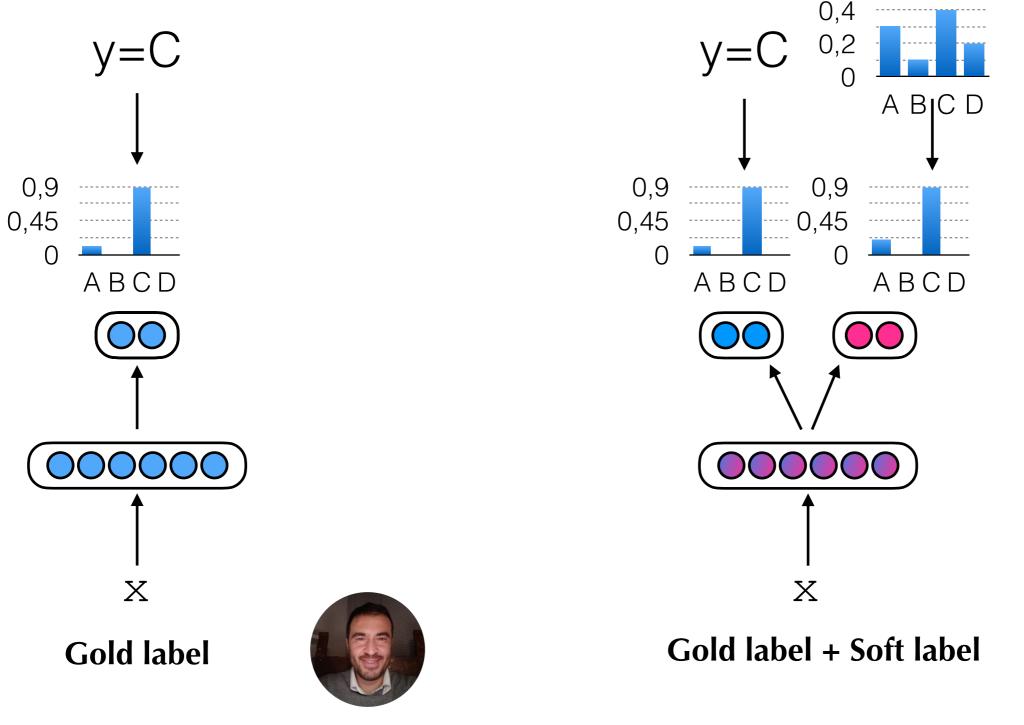
## Augment gold with disagreement

## Weighting by Disagreement



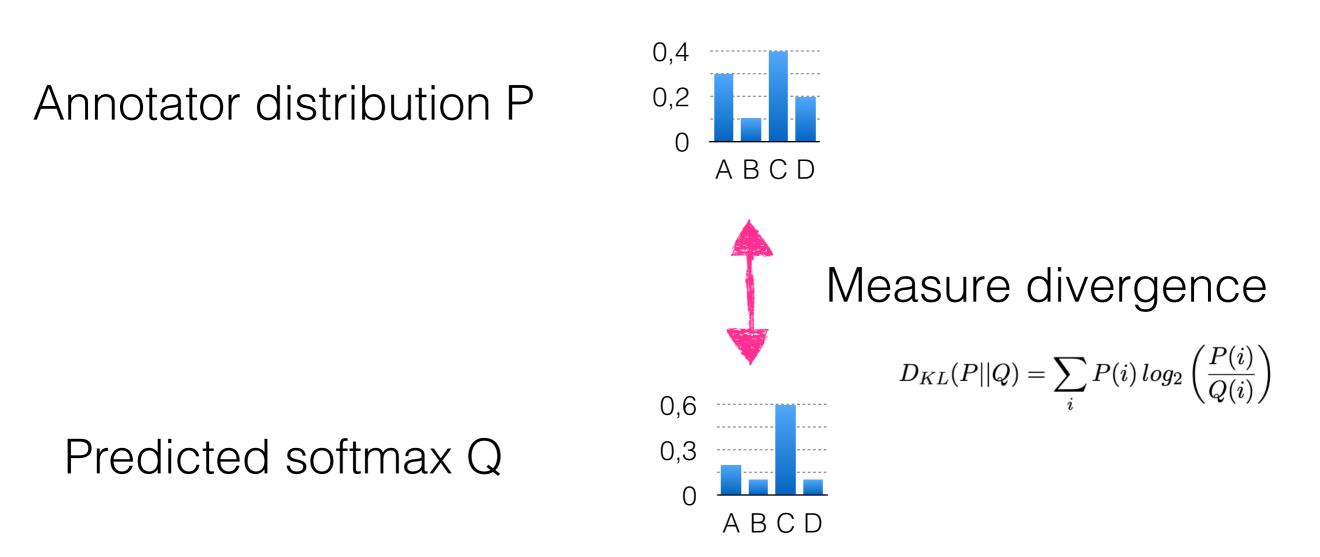
27

#### Soft-labels via Multi-Task Learning



(Fornaciari, Uma, Paul, Plank, Hovy, Poesio 2021 NAACL)

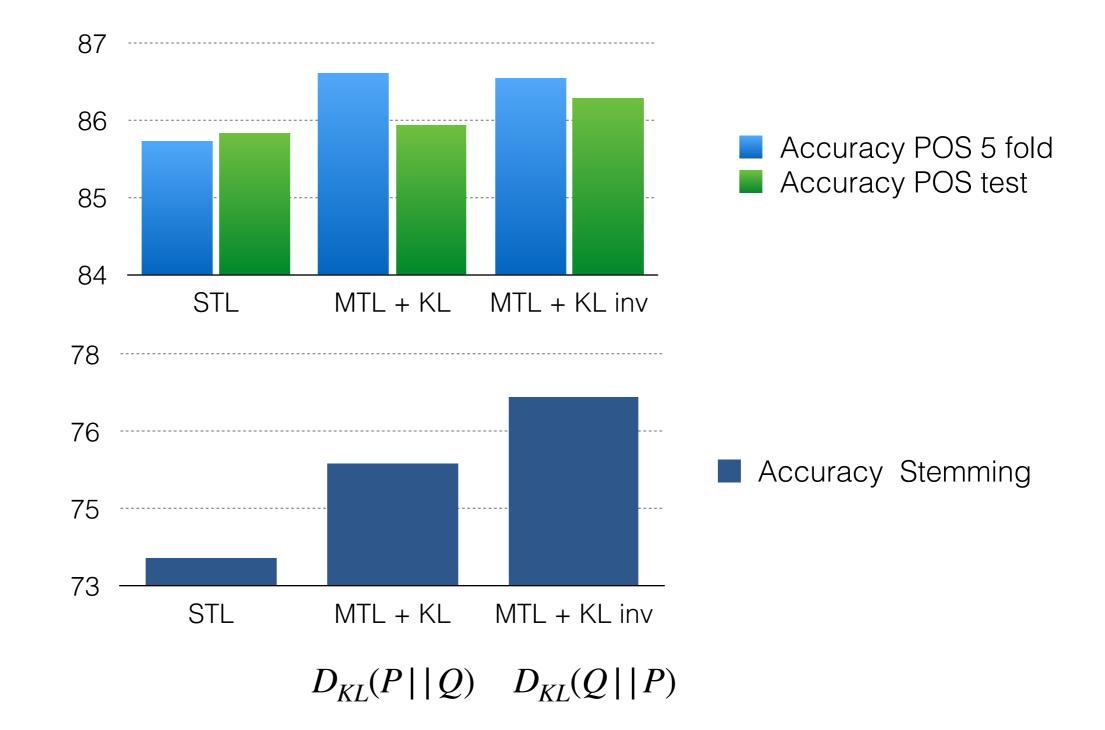
#### **Soft-labels**



#### Experiments

- Comparison:
  - Single task learning
  - Multi-task learning (with gold or majority vote)
    - With soft loss
  - Two NLP tasks in this paper: POS and stemming

#### Results



## Learn directly from raw annotations

## E.g. Deep Learning from Crowd

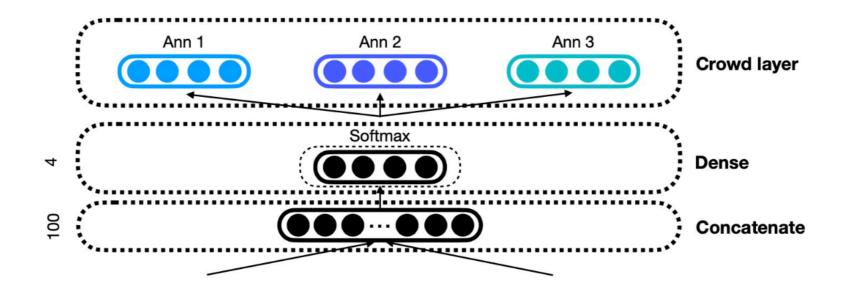


Figure 3: Illustration of deep learning from crowds proposed by Rodrigues and Pereira (2017).

#### Experiments: Understanding Indirect Questions

• **Dataset**: Friends-QIA dataset (Damgaard, Toborek, Eriksen & Plank, 2021) to appear in CODI @ EMNLP 2021; Fleiss 0.8833

| Dataset   | FRIENDS-QIA |
|-----------|-------------|
| All       | 5,930       |
| Train     | 4,744       |
| Dev       | 593         |
| Test      | 593         |
|           |             |
| All agree | 75.02%      |
| Two agre  | e 23.39%    |
| All disag | ree 1.59%   |

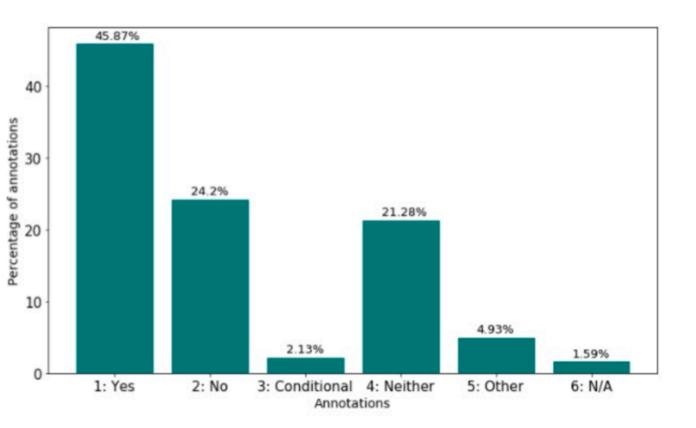
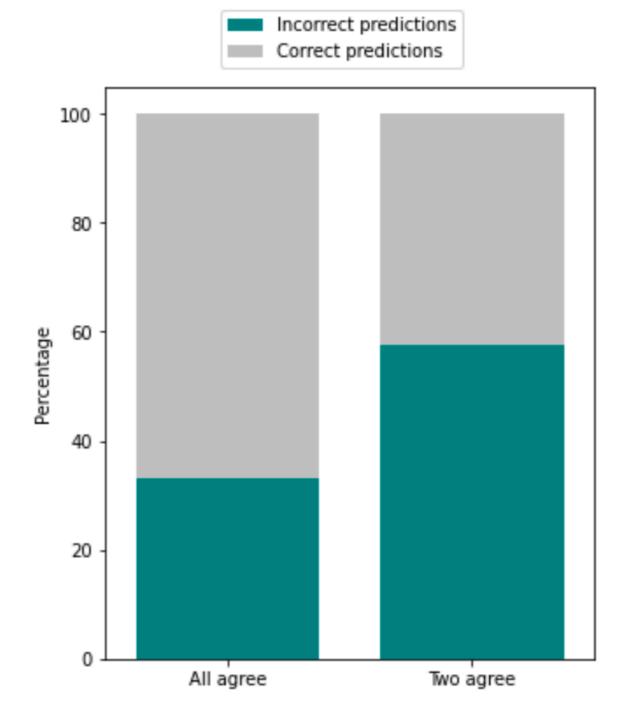


Table 3: Annotator agreement.

Figure 1: Gold label distribution.



# Most incorrect predictions on instances humans did not agree on

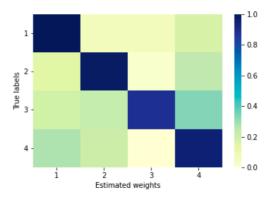


Correct and incorrect predictions of CNN with BERT vs. annotator agreement.

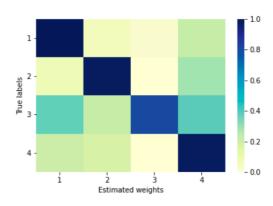
#### **Deep Learning from Crowd**

|                               | Accuracy | F1-score |  |
|-------------------------------|----------|----------|--|
| Majority baseline             | 49.07    | 16.46    |  |
| Train on FRIENDS-QIA:         |          |          |  |
| CNN with BERT                 | 61.33    | 45.65    |  |
| CNN with BERT, multi-input    | 61.10    | 45.53    |  |
| CNN with BERT + crowd layer   | 60.32    | 47.89    |  |
| Train on FRIENDS-QIA + CIRCA: |          |          |  |
| CNN with BERT                 | 58.52    | 41.82    |  |

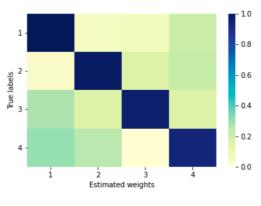
Table 7: Results on the FRIENDS-QIA test data.



(a) Annotator 1



(b) Annotator 2



(c) Annotator 3

More methods, overview and empirical evaluations: JAIR survey by Uma et al., 2021: Learning from Disagreement: A Survey

Alexandra Uma, Tommaso Fornaciari, Dirk Hovy, Silviu Paun, Barbara Plank, Massimo Poesio (2021 JAIR, forthcoming)

#### Roadmap



3

Modelling: How can we leverage disagreement?

Evaluation: How to evaluate in light of disagreement?

# We Need to Talk about Disagreement in Evaluation

Work in collaboration with Alexandra Uma, Dirk Hovy, Massimo Poesio, Michael Fell, Silviu Paun, Tommaso Fornaciari, Valerio Basile (BPPF workshop@ACL 2021)

#### **Evaluation in Interpretation Tasks**

- A single correct answers ignores the **subjectivity** and **complexity** of many tasks
  - → Focus on "easy", low-risk evaluation
- Many works on learning from disagreement compare against an evaluation set assumed to encode a **single ground truth**

#### **Example from VQA 2.0**

What is the background metal structure?



Ms COCO image id 393274, VQA 2.0 question id 393274004

- trees
  station
  awning
  platform
  platform
  platform
  platform
  platform
  shelter
  shelter
  train stop
  awning
- Gold labels are often an **idealisation**, unreconcilable disagreement is abundant

#### Sources of disagreement

- Stimulus characteristics (ambiguity, task difficulty)
- Individual differences (incl. cultural and sociodemographics): for example in hate speech or sentiment
- Context and attention (Intra-coder disagreement; attention slips play a non-negligible role as well (Beigman Klebanov et al., 2008)

## Similar position:

- Plank et al., (2014): Linguistically debatable or just plain wrong?
- Jamison & Gurevych (2015), Fornaciari et al., (2021): Noise or additional information?
- Aroyo & Welty (2015): Truth is a lie: Crowd Truth and the Seven Myths of human annotation
- Palomaki et al. (2018): a range of "acceptable variation"
- Uma et al. (2020), Basile (2020): Soft loss in NLP, evaluation

#### In contrast:

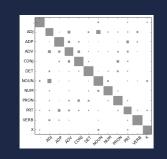
- Bowman & Dahl (2021): study and eliminate biases and artefacts in data
- Beigman Klebanov & Beigman (2009): evaluate on "easy" instances



## **Evaluation in Light of Disagreement**

- Proposal: evaluate against hard and soft labels
- Soft evaluation sheds more light if uncertainty in models is similar to human uncertainty in labeling (human collective)
- Soft label evaluation e.g.:
  - Jensen-Shannon divergence (Uma et al., 2020; 2021; Nie et al., 2020); Uma et al. present further inf.-theoretic measures
  - Cross-entropy: Image classification (Peterson et al., 2019); in NLP (Pavlick & Kwiatkovski, 2019; Uma et al., 2020)
- Comparison of hard & soft evaluation in our upcoming survey

#### Take-home message



 $\checkmark$  not all disagreement is noise



√embrace it during learning

Consider releasing raw annotations



 More work needed to understand forms of disagreement and embrace it in evaluation see Uma et al. 2021 & Basile et al. 2021 **Questions?** Thanks!

### What to do about Human Disagreement in NLP?

#### @barbara\_plank <u>bapl@itu.dk</u>

Thanks to the support by:









<u>nlpnorth.github.io</u>